简单来说,普通电脑的计算过程采用的是二进制系统,而量子态允许的是将更复杂的信息编码成单个数位。量子计算机的主要构件是一个“量子位”,也就是说是一个量子对象,因此可以处于无数个状态。任何具有量子特性的东西,如电子或光子,都可以作为量子位,只要计算机能够隔离和控制它。
一旦在计算机内部形成,每个量子位就会被连接到能够向其传送电磁能量的机制中。而为了运行特定的程序,计算机会用到精确的脚本序列,例如微波传输,并以一定的频率和一定的时间段来调整量子位。这些脉冲相当于量子程序的“指令”,每条指令都会导致量子位的为测量状态以特定方式改变。
什么是量子计算?
量子计算利用了亚原子粒子的特性不可分割性和不可复制性,量子纠缠和并行计算能力,可以比传统计算机更快地完成运算并且使用更少的能量。
为什么要发展量子计算机?
我们知道传统的计算机的二进制计算依靠的是芯片里的晶体管,简单的理解为通电代表1,断电代表0。现代的计算机晶体管虽然越来越小,要提高计算能力只能不停叠加晶体管,集成度很高,但数量很庞大,需要消耗大量的能量,这就导致科学界发展光子计算、生物计算、量子计算等领域解决大量的能源消耗和摩尔定律导致的计算能力瓶颈问题。
量子计算机与现有计算机的操作原理完全不同,这使得它们非常适合解决特定的数学问题,例如找到非常大的质数。由于质数在密码学中非常重要,量子计算机很可能很快就能破解许多保证我们的在线信息安全的系统。由于存在这些风险,研究人员已经在尝试开发能够抵抗量子黑客攻击的技术,而另一方面,基于量子的密码系统可能比传统的类似物更加安全。
量子计算机正在不断地完善
量子计算领域还有许多未知因素。凭借传统的计算机技术,摩尔定律确保了每两年左右的晶体管数量增加一倍。但是与量子机器相关的复杂电子学目前还没有类似的预测,对此,许多工程师预计,在未来,人类仍将仅限于对具有相对较少量子位的机器(可能只有几百个)进行应用。因此,他们也正在集中精力研究适用于预计在不久的将来可用的适度大小的量子系统的算法。
当量子力学遇到电子计算机,量子计算机就诞生了。计算机的最小单位是一个比特。由于计算机是二进制的,这个比特要么是1,要么是0,没有其他选择,比如说信息。1010,包含四个比特,八个比特组成1B,1024B等于1K,1024K等于1M,1024M等于1G,以此类推。量子计算利用亚原子粒子的不可分性和不可复制性、量子纠缠和并行计算能力,比传统计算机更快地进行计算,并使用更少的能源。传统计算机使用晶体管(类似于开关)的特性,可以开启或关闭。
这个基本单位,我们称之为比特,在数学上可以用二进制的零和一表示。这就是计算机硬件最底层的信息表示。而量子计算机,是利用量子 "叠加"、"纠缠"、"干涉 "的物理特性,计算和设计硬件的。量子计算机需要特殊的算法来进行数学运算,与传统计算机的二进制相对应。我们知道,传统计算机的二进制计算依靠的是芯片中的晶体管,简单理解就是通电时为1,断电时为0。
现代计算机的晶体管虽然越来越小,为了提高计算能力晶体管只能不断叠加,集成度很高,但数量很大,需要消耗大量的能量,这就导致科学发展中的光子计算、生物、计算、量子计算等领域解决了摩尔定律造成的大量能耗和计算能力瓶颈问题。
量子计算机的运行原理与现有计算机完全不同,使其成为解决特定数学问题的理想选择,如寻找非常大的素数。由于素数在密码学中非常重要,量子计算机可能很快就能破解许多保证我们网上信息安全的系统。由于这些风险,研究人员已经在努力开发能够抵御量子黑客攻击的技术,而另一方面,基于量子的密码系统可能比传统的类比法更安全。
我觉得可以,解铃还须系铃人。
正如大多数人所了解的,量子计算机在密码破解上有着巨大潜力。
当今主流的非对称(公钥)加密算法,如RSA加密算法,大多数都是基于于大整数的因式分解或者有限域上的离散指数的计算这两个数学难题。
他们的破解难度也就依赖于解决这些问题的效率。
传统计算机上,要求解这两个数学难题,花费时间为指数时间(即破解时间随着公钥长度的增长以指数级增长),这在实际应用中是无法接受的。
量子计算机具有超快的并行计算和模拟能力,计算能力随可操纵的粒子数呈指数增长。曾有人打过一个比方:如果现在传统计算机的速度是自行车,量子计算机的速度就如同飞机。
例如,使用亿亿次的“天河二号”超级计算机求解一个亿亿亿变量的方程组,所需时间为100年,而使用一台万亿次的量子计算机求解同一个方程组,仅需0.01秒。
因为计算能力的革命性突破,如同蒸汽机之于工业文明,量子计算机将成为未来科技的引擎。实验测试表明,该原型机的取样速度不仅比国际同行类似的实验加快至少2.4万倍,同时,通过和经典算法比较,也比人类历史上第一台电子管计算机和第一台晶体管计算机运行速度快10到100倍。
“这是第一台超越早期经典计算机ENIAC的基于单光子的量子模拟机,为最终实现超越经典计算能力的量子计算奠定了基础。”陆朝阳指出。
扩展资料
2017年5月3日中国科技大学潘建伟院士科研团队宣布光量子计算机成功构建。潘建伟团队在多光子纠缠领域始终保持着国际领先水平,团队利用自主发展的综合性能国际最优的量子点单光子源,通过电控可编程的光量子线路,构建了针对多光子“玻色取样”任务的光量子计算原型机。
这台光量子计算机标志着我国在基于光子的量子计算机研究方面取得突破性进展,为最终实现超越经典计算能力的量子计算奠定了坚实基础。
参考资料来源:百度百科-光量子计算机
参考资料来源:人民网-中国光量子计算机诞生
在当前情况下,量子计算机无法帮助进行比特币挖矿
转向量子计算机不会影响挖矿速度,因为随着价格的飙升,挖矿难度也会增加
确实,量子算法的推出将使传统的加密货币系统面临风险
比特币(BTC)是适用于区块链技术的加密货币。众所周知,区块链是一种在线去中心化的公共账本,它由包含一组交易的区块组成。挖矿是将加密货币引入系统的必要条件。确实,挖矿过程是在加密货币哈希函数上进行的。值得注意的是,以上简要说明得出的结论是,要更快地开采比特币,比特币矿工需要先于其他任何人识别正确的节点。
量子计算机可以帮助更快地识别正确的节点吗?
根据量子计算研究人员Anastasia Marchenkova的说法,当前没有已知的量子算法可以撤销SHA-256哈希函数。我们知道,要开采比特币,矿工需要识别一个80字节长的字符串,识别后,他们需要将哈希与目标进行比较。如果散列与目标相似,则意味着已挖出一个块。阿纳斯塔西娅(Anastasia Marchenkova)进一步解释说,量子计算机不会通过暴力破解或对发现节点进行仿效来找到可以消除哈希的量子算法。但是,由于当前我们没有任何此类算法,因此量子计算机无法帮助我们进行挖矿。
量子计算机对比特币挖矿的影响
在目前的情况下,我们没有这样的量子算法,但是如果将来我们发现它,该怎么办?众所周知,比特币旨在识别挖矿速度,并且同样提高了挖矿难度。意味着找到算法后难度将变得更加复杂。
实际上,现在实际上不可能使用普通计算机进行挖矿,因此矿工使用ASIC芯片来挖比特币。当前,使用了两种加密货币,RSA和椭圆曲线加密货币。实际上,这两种加密货币方法都容易受到量子计算机的攻击。 根据Anastasia的说法,我们只需要2500 cubits即可中断algoant中断EC,而需要约4000 cubit才能中断RSA。
黑客可以识别比特币钱包地址
在当前情况下,硬分叉是不可能的,因为许多用户丢失了他们的钱包地址和硬币。现在,令人担忧的因素是,量子计算机可以轻松地帮助追踪那些丢失的钱包,而黑客可以使用此类计算机解密并获取此类丢失的硬币。
但是,主要的关注点是量子计算机的研究。此类计算机系统的进入将使加密货币系统面临风险。该系统可能是比特币的破坏者。
每个加入 公务员测试 的人都知道,国家考试的次要内容主要包括 应用和停止测试的两个大纲。应用测试 长度通常主要...
很多 没有人知道如何写毕业 论文。他们真的对付了 第一次写论文的同学 ,更不用说他们了?你知道如何写毕业 论文...
自我评价是否间接影响评价是否间接影响到 战争加入 社会运动 的热情,也影响到 与他人战斗的接触 关闭。如何在工...
在尝试的时候 ,我们都需要 停止自我推荐 。看 很多 员工,尝试的自我推荐 也是一个非常重要的 环节,那么如何...
我们在寻找东西的时刻 ,如何 能力 足以写懦夫本身 ?我的简历关闭了自我推荐 的封闭内容吗?你知道吗?简历处理...
简历外的工作趋势也是简历外的主要 组成 部门 ,所以对于 我们来说,如何写一份糟糕的简历工作趋势?昨天给除夕...