当前位置:首页 > 联系黑客 > 正文内容

黑客对网络协议(网络黑客定义)

hacker2年前 (2022-07-05)联系黑客78

本文目录一览:

黑客对网络的攻击手段

1、后门程序

由于程序员设计一些功能复杂的程序时,一般采用模块化的程序设计思想,将整个项目分割为多个功能模块,分别进行设计、调试,这时的后门就是一个模块的秘密入口。在程序开发阶段,后门便于测试、更改和增强模块功能。正常情况下,完成设计之后需要去掉各个模块的后门,不过有时由于疏忽或者其他原因(如将其留在程序中,便于日后访问、测试或维护)后门没有去掉,一些别有用心的人会利用穷举搜索法发现并利用这些后门,然后进入系统并发动攻击。

2、信息炸弹

信息炸弹是指使用一些特殊工具软件,短时间内向目标服务器发送大量超出系统负荷的信息,造成目标服务器超负荷、网络堵塞、系统崩溃的攻击手段。比如向未打补丁的 Windows 95系统发送特定组合的 UDP 数据包,会导致目标系统死机或重启;向某型号的路由器发送特定数据包致使路由器死机;向某人的电子邮件发送大量的垃圾邮件将此邮箱“撑爆”等。目前常见的信息炸弹有邮件炸弹、逻辑炸弹等。

3.DOS攻击

分为DOS攻击和DDOS攻击。DOS攻击它是使用超出被攻击目标处理能力的大量数据包消耗系统可用系统、带宽资源,最后致使网络服务瘫痪的一种攻击手段。作为攻击者,首先需要通过常规的黑客手段侵入并控制某个网站,然后在服务器上安装并启动一个可由攻击者发出的特殊指令来控制进程,攻击者把攻击对象的IP地址作为指令下达给进程的时候,这些进程就开始对目标主机发起攻击。这种方式可以集中大量的网络服务器带宽,对某个特定目标实施攻击,因而威力巨大,顷刻之间就可以使被攻击目标带宽资源耗尽,导致服务器瘫痪。比如1999年美国明尼苏达大学遭到的黑客攻击就属于这种方式。DDOS攻击是黑客进入计算条件,一个磁盘操作系统(拒绝服务)或DDoS攻击(分布式拒绝服务)攻击包括努力中断某一网络资源的服务,使其暂时无法使用。

这些攻击通常是为了停止一个互联网连接的主机,然而一些尝试可能的目标一定机以及服务。DDOS没有固定的地方,这些攻击随时都有可能发生;他们的目标行业全世界。分布式拒绝服务攻击大多出现在服务器被大量来自攻击者或僵尸网络通信的要求。

服务器无法控制超文本传输协议要求任何进一步的,最终关闭,使其服务的合法用户的一致好评。这些攻击通常不会引起任何的网站或服务器损坏,但请暂时关闭。

这种方法的应用已经扩大了很多,现在用于更恶意的目的;喜欢掩盖欺诈和威慑安防面板等。

4、网络监听

网络监听是一种监视网络状态、数据流以及网络上传输信息的管理工具,它可以将网络接口设置在监听模式,并且可以截获网上传输的信息,也就是说,当黑客登录网络主机并取得超级用户权限后,若要登录其他主机,使用网络监听可以有效地截获网上的数据,这是黑客使用最多的方法,但是,网络监听只能应用于物理上连接于同一网段的主机,通常被用做获取用户口令。

5.系统漏洞

许多系统都有这样那样的安全漏洞(Bugs),其中某些是操作系统或应用软件本身具有的,如Sendmail漏洞,Windows98中的共享目录密码验证漏洞和IE5漏洞等,这些漏洞在补丁未被开发出来之前一般很难防御黑客的破坏,除非你不上网。还有就是有些程序员设计一些功能复杂的程序时,一般采用模块化的程序设计思想,将整个项目分割为多个功能模块,分别进行设计、调试,这时的后门就是一个模块的秘密入口。在程序开发阶段,后门便于测试、更改和增强模块功能。正常情况下,完成设计之后需要去掉各个模块的后门,不过有时由于疏忽或者其他原因(如将其留在程序中,便于日后访问、测试或维护)后门没有去掉,一些别有用心的人会利用专门的扫描工具发现并利用这些后门,然后进入系统并发动攻击。

6、密码破解当然也是黑客常用的攻击手段之一。

7.诱入法

黑客编写一些看起来“合法”的程序,上传到一些FTP站点或是提供给某些个人主页,诱导用户下载。当一个用户下载软件时,黑客的软件一起下载到用户的机器上。该软件会跟踪用户的电脑操作,它静静地记录着用户输入的每个口令,然后把它们发送给黑客指定的Internet信箱。例如,有人发送给用户电子邮件,声称为“确定我们的用户需要”而进行调查。作为对填写表格的回报,允许用户免费使用多少小时。但是,该程序实际上却是搜集用户的口令,并把它们发送给某个远方的“黑客”

8.病毒攻击

计算机病毒可通过网页、即时通信软件、恶意软件、系统漏洞、U盘、移动硬盘、电子邮件、BBS等传播。

注:黑客的攻击手段还有很多

网络黑客是怎么操作的

Web服务器将成为下一代黑客施展妖术的对象。在很大程度上,进行这种攻击只需一个Web浏览器和一个创造性的头脑。以前,黑客的攻击对象集中在操作系统和网络协议上,但随着这些攻击目标的弱点和漏洞逐渐得到修补,要进行这类攻击已经变得非常困难。操作系统正在变得更加稳健,对攻击的抵抗能力日益提高。随着身份验证和加密功能渐渐被内置到网络协议中,网络协议也变得更加安全。此外,防火墙也越来越智能,成为网络和系统的外部保护屏障。

另一方面,电子商务技术正在日益普及开来,其复杂性有增无减。基于Web的应用程序正在与基本的操作系统和后端数据库更加紧密地集成在一起。遗憾的是,人们在基于Web的基础设施安全性方面所做的工作还很不够。Web服务器和Web应用程序中的弱点被发现的速度为何这么快呢?

有很多因素促成了这种Web黑客活动的快速增加。其中最主要的原因是防火墙允许所有的Web通信都可以进出网络,而防火墙无法防止对Web服务器程序及其组件或Web应用程序的攻击。第二个原因是,Web服务器和基于Web的应用程序有时是在“功能第一,安全其次”的思想指导下开发出来的。

当您的Web服务器面临巨大威胁时,怎样保障它们的安全呢?这就需要您不断了解新信息,新情况,每天跟踪您所用服务器的有关网站,阅读相关新闻并向它进行咨询。为了让你着手这方面的工作,下面介绍黑客对NT系统的四种常用攻击手段,同时介绍如何防止这类攻击。

Microsoft IIS ism.dll缓冲区溢出

受影响的服务器:运行IIS 4.0并带有“Service Pack 3/4/5”的Windows NT服务器

Microsoft IIS缓冲区溢出这一安全弱点是Web服务器无时不有的重大缺陷之一。该弱点被称为IIS

eEye,这个名称来自发现此问题的一个小组。在实施缓冲区溢出攻击时,黑客向目标程序或服务输入超出程序处理能力的数据,导致程序突然终止。另外,还可以通过设置,在执行中的程序终止运行前,用输入的内容来覆盖此程序的某些部分,这样就可以在服务器的安全权限环境下执行任意黑客命令。

eEye发现,IIS用来解释HTR文件的解释程序是ism.dll,它对缓冲区溢出攻击的抵抗力十分脆弱。如果攻击者将一个以.htr结尾的超长文件名(大约3,000个字符,或更多)传递给IIS,那么输入值将在ism.dll中造成输入缓冲区溢出,并导致IIS崩溃。如果攻击者输入的不是一串字母而是可执行代码(通常称为“鸡蛋”或“外壳代码”),那么在IIS终止之前将执行该代码。由eEye小组发现的这一攻击方法包括三个步骤:

1.创建一个用于侦听任意TCP端口上连接活动的程序。一旦接收到连接信号,该程序将执行一个Windows命令外壳程序(cmd.exe),并将该外壳与连接绑定在一起。这个程序是经过修改的Netcat。Netcat是一个流行的网络连接实用程序,其源代码可以免费获得。

2.在IIS的ism.dll中制造缓冲区溢出,并使IIS从外部Web站点下载侦听程序(由步骤1产生)。

3.执行刚下载的程序(由步骤2产生),该程序将等待传入的连接并使攻击者进入Windows命令外壳程序中。

由于缓冲区溢出导致IIS在崩溃之前转而运行Windows命令外壳,所以该外壳程序将在IIS的安全权限背景下运行,而该安全权限背景等价于NT

Administrator权限。这样,攻击者要做的只是与被攻击的IIS服务器的侦听端口建立连接,然后等着出现c:提示就万事大吉了。现在,攻击者拥有对整个NT服务器的管理权限,可以做任何事,比如,添加新用户、修改服务器的内容、格式化驱动器,甚至将该服务器用作攻击其它系统的踏脚石。

运行IIS 4.0并带有“Service Pack 3/4/5”的Windows

NT服务器容易受到此类攻击。Microsoft已经发布了对该弱点的修补程序。Windows NT Service Pack

6也已经修补了该问题。

Microsoft IIS MDAC RDS安全弱点

受影响的服务器:运行IIS 4.0并安装了MDAC 2.1或更早版本的Windows NT服务器

在发现IIS eEye安全弱点的大约一个月后,IIS

4.0的另一个弱点又暴露出来。使用Microsoft数据访问组件(MDAC)和远程数据服务(RDS),攻击者可以建立非法的ODBC连接,并获得对Web服务器上的内部文件的访问权。如果安装了Microsoft

Jet OLE DB提供程序或Datashape提供程序,攻击者可以使用Visual Basic for Applications

shell()函数发出能够在服务器上执行的命令。

在安装了MDAC 2.1或更高版本的IIS 4.0上,从位于其公共目录中的msadcmsadcs.dll,可以找到MDAC

RDS弱点。Rain Forest

Puppy在其站点中对该弱点进行了详细说明。该弱点利用了IIS上MDAC默认安装时的不适当配置和安全机制的缺乏这一漏洞。在等价于NT

Administrator的IIS Web服务器进程的安全权限背景下,进行这种攻击的黑客可以在NT系统上远程执行任意命令。

MDAC的弱点不是由于技术造成的,而是由于用户对它的配置方式所致。很多站点是通过NT Option Pack 4.0安装IIS

4.0的。如果NT Option Pack

4.0是以典型或默认配置安装的,那么MDAC就容易遭到这种攻击。大多数使用默认安装的系统管理员都没有具体调整过这些设置,从而使Web服务器的安全性大大降低。

Foundstone公司的George Kurtz、Purdue大学的Nitesh

Dhanjani和我曾经共同设计了一个只有一行的命令字符串,该命令将利用MDAC

RDS弱点,使远程NT系统启动一个通过FTP或TFTP进行的文件传输过程。这个命令将告诉服务器到从某个外部系统下载并执行Netcat。Netcat将运行Windows命令外壳程序,并建立一个返回攻击者计算机的连接,这样,攻击者就获得了对远程NT系统的完全管理控制权。

Microsoft已经发布了相应的安全公告,并对使IIS 4.0免受该弱点攻击的保护措施进行了说明。

Allaire ColdFusion 4.0弱点

受影响的服务器:运行在Windows NT上的Allaire ColdFusion Server 4.0

作为还算容易使用的、功能强大的脚本语言,ColdFusion已经广泛流行起来。但流行并不意味着安全。ColdFusion的问题不在于该服务器自身,而是在于它附带的脚本。ColdFusion

4.0提供了示范应用程序和范例,它们可以在位于Web服务器根目录中的cfdocsexampleapp和cfdocsexpeval目录中找到。当用户执行典型安装时,将安装这些应用程序和脚本。ColdFusion所附带的部分范例经过修改后,将允许非法访问服务器上所包含的敏感数据。这些弱点表明,基本的应用程序服务器可以被编写得不好的应用程序脚本歪曲利用。

存在这种弱点的一个范例应用程序是cfdocsexampleappdocssourcewindow.cfm。因为ColdFusion是作为具有Administrator权限的系统服务运行的,所以,该程序可以被用来任意访问和查看NT

Web服务器上的任何文件,包括boot.ini。用这种方法可以检索任何文件。Packet Storm对该弱点做了完整解释。

而更严重的弱点存在于cfdocsexpevalopenfile.cfm、cfdocsexpevaldisplayopenedfile.cfm和cfdocsexpevalexprcalc.cfm中。这三个文件可以用来查看服务器上的任何文件,更为严重的是,它们还能将任意文件上载到服务器。对该弱点如何发作的讨论超出了本文的范围,欲了解详细信息请访问L0pht

Heavy

Industries的咨询信息。表达式求值程序exprcalc.cfm用于让开发人员计算被上载文件中的ColdFusion表达式的值。作为预防手段,该脚本在进行表达式计算时便会把被上载的文件删除掉,但要避免删除却是件容易的事。这样,攻击者可以上载恶意文件,并最终控制服务器。

这些就是ColdFusion的示范脚本中最严重的弱点。要防止出现问题,请从任何运行中的服务器中删除ColdFusion示范脚本。Allaire的Security

Zone提供了补丁程序,并提供了如何保护ColdFusion服务器的进一步信息。

Sambar 4.3 hello.bat

受影响的服务器:运行在Windows NT上的Sambar 4.3 beta 7和更早版本

Sambar是提供给开发者的免费Web服务器。它提供了对CGI和WinCGI脚本、ODBC脚本以及ISAPI的支持。它甚至捆绑了Perl

5解释器。

Sambar 4.3 beta

7版和更早版本附带两个名为hello.bat和echo.bat的文件,它们是将Windows批处理文件用作CGI脚本的范例。这两个脚本本身没有问题,hello.bat显示字符串“Hello

World”,而echo.bat显示字符串“Place

Holder”。但当批处理文件被用作CGI脚本时,Web服务器将使用Windows命令外壳程序cmd.exe来运行它们。这样,攻击者可以利用该弱点针对目标服务器运行任意命令。例如,假如攻击者把URL

;dir+c:放在他或她的浏览器中,那么,将在服务器上运行命令“dir

c:”,并在浏览器上显示结果。由于Sambar是在NT

Administrator安全权限下运行的,因此事情会变得更为复杂。这样的权限等级可以让攻击者作为NT Administrator运行任意命令。

Windows命令外壳使用“”在相同命令行上分隔多个命令。如果用户将“”放在hello.bat的后面,并在其后添加一个命令,那么将在执行hello.bat后执行第二个命令。

由于已经删除了文件hello.bat和echo.bat,Sambar 4.3 beta

8版和更高版本没有该弱点。但是,由于Windows命令外壳程序解析命令行的方式无法改变,所以并没有办法能真正修正该问题。如果您安装了4.3

beta 7版或更低版本,请一定要删除hello.bat和echo.bat。

属于网络协议的攻击有哪几种

1. TCP/IP 协议的脆弱性

1.1 不能提供可靠的身份验证

TCP/IP 协议以 32 bit 的 IP 地址来作为网络节点的唯一标识,而 IP 地址只是用户软件设置中的一个参数,因而是可以随意修改的。

对 UDP 来说,是根据这个 IP 地址来唯一标识通信对方。 TCP 则通过三次握手,使情况稍有改善。 TCP 中的每个报文都含有一个标识本报文在整个通信流中位置的 32 bit 序列号,通信双方通过序列号来确认数据的有效性。

由于 TCP 设计三次握手过程本身并不是为了身份验证,只是提供同步确认和可靠通信,虽然这也能够提供一定的身份验证的支持,但这种支持很薄弱。

由于 TCP/IP 不能对节点上的用户进行有效的身份认证,服务器无法鉴别登录用户的身份有效性,攻击者可以冒充某个可信节点的 IP 地址,进行 IP 欺骗攻击.

其次,由于某些系统的 TCP 序列号是可以预测的,攻击者可以构造一个TCP'数据包,对网络中的某个可信节点进行攻击。

1.2 不能有效防止信息泄漏

IPv4 中没有考虑防止信息泄漏,在 IP 、 TCP 、 UDP 中都没有对数据进行加密。 IP 协议是无连接的协议,一个 IP 包在传输过程中很可能会经过很多路由器和网段,在其中的任何一个环节都很容易进行窃昕 。攻击者只需简单地安装一个网络嗅探器,就可以看到通过本节点的所有网络数据包。

1.3 没有提供可靠的信息完整性验证手段

在 IP 协议中,仅对 IP 头实现校验和保护

在UDP 协议中,对整个报文的校验和检查是一个可选项,并且对 UDP 报文的丢失不做检查。

在 TCP 协议中,虽然每个报文都经过校验和检查,并且通过连续的序列号来对包的顺序和完整进行检查,保证数据的可靠传输。但是,校验算法中没有涉及加密和密码验证,很容易对报文内容进行修改,再重新计算校验和

1.4 协议没有手段控制资源占杳和分配

TCP/IP 中,对资源占杳和分配设计的一个基本原则是自觉原则。如参加 TCP通信的一方发现上次发送的数据报丢失,则主动将通信速率降至原来的一半。这样,也给恶意的网络破坏者提供了机会 c 如网络破坏者可以大量的发 IP 报,造成网络阻塞,也可以向一台主机发送大量的 SYN 包从而大量占有该主机的资源 (SYN Flood) 。这种基于资源占用造成的攻击被称为拒绝服务攻击( DOS)

2.常见 TCP/IP 协议攻击方法分析

2.1 IP 欺骗( IP Spoofing)

IP 欺骗是指一个攻击者假冒一个主机或合法用户的 IP 地址,利用两个主机之间的信任关系来达到攻击的目的,而这种信任关系只是根据源 IP 地址来确定。所谓信任关系是指当主机 B 信任主机 A 上的 X用户时,只要 X 在 A 上登录, X 用户就可以直接登录到主机 B 上,而不需要任何口令。

IP 欺骗通常需要攻击者能构造各种形式 IP 数据包,用虚假的源 IP 地址替代自己的真实 IP 地址。如果主机之间存在基于 IP 地址的信任关系,目标主机无法检测出已经被欺骗。

防范措施

各个网络 ISP 应该限制源地址为外部地址的 IP 数据包进入互联网

合理的配置防火墙,限制数据包的源地址为内部网络的数据包进入网络。

2.2 TCP 会话劫持 (TCP sessJOn hijacking)

image.png

TCP 会话劫持跳过连接过程.对一个已经建立的连接进行攻击。攻击者与被假冒主机和目标主机之一在同一个子网中,攻击者通过一个嗅探程序可以看到被假冒主机和目标主机之间通信的数据包。

攻击者看到被假冒主机和目标主机建立一个连接并进行身份认证后,通过对数据包捕获和进行分析,就可以得到连接的序列号。

一旦得到正确的序列号就可以发送一个假冒的 TCP 分段,接管已经建立的连接。这样,被假冒主机发送的数据包都会被目标主机忽略,因为它们的序列号会被目标主机认为不正确。

防范措施

最主要的方法是在传输层对数据进行加密。

2.3 拒绝服务( Denial Of Service )

拒绝服务坷的目的就是使受害的服务器不能提供正常的网络服务。

2.3.1 SYN 淹没 (SYN Flooding)

当开放了一个TCP端口后,该端口就处于Listening状态,不停地监视发到该端口的Syn报文,一旦接收到Client发来的Syn报文,就需要为该请求分配一个TCB(Transmission Control Block),通常一个TCB至少需要280个字节,在某些操作系统中TCB甚至需要1300个字节,并返回一个SYN ACK命令,立即转为SYN-RECEIVED即半开连接状态,而操作系统在SOCK的实现上最多可开启半开连接个数是一定的。

image.png

从以上过程可以看到,如果恶意的向某个服务器端口发送大量的SYN包,则可以使服务器打开大量的半开连接,分配TCB,从而消耗大量的服务器资源,同时也使得正常的连接请求无法被相应。而攻击发起方的资源消耗相比较可忽略不计。

防范措施

无效连接监视释放

这种方法不停监视系统的半开连接和不活动连接,当达到一定阈值时拆除这些连接,从而释放系统资源。这种方法对于所有的连接一视同仁,而且由于SYN Flood造成的半开连接数量很大,正常连接请求也被淹没在其中被这种方式误释放掉,因此这种方法属于入门级的SYN Flood方法。

延缓TCB分配方法

从前面SYN Flood原理可以看到,消耗服务器资源主要是因为当SYN数据报文一到达,系统立即分配TCB,从而占用了资源。而SYN Flood由于很难建立起正常连接,因此,当正常连接建立起来后再分配TCB则可以有效地减轻服务器资源的消耗。常见的方法是使用Syn Cache和Syn Cookie技术。

Syn Cache技术:

这种技术是在收到SYN数据报文时不急于去分配TCB,而是先回应一个SYN ACK报文,并在一个专用HASH表(Cache)中保存这种半开连接信息,直到收到正确的回应ACK报文再分配TCB。在FreeBSD系统中这种Cache每个半开连接只需使用160字节,远小于TCB所需的736个字节。在发送的SYN ACK中需要使用一个己方的Sequence Number,这个数字不能被对方猜到,否则对于某些稍微智能一点的Syn Flood攻击软件来说,它们在发送Syn报文后会发送一个ACK报文,如果己方的Sequence Number被对方猜测到,则会被其建立起真正的连接。因此一般采用一些加密算法生成难于预测的Sequence Number。

Syn Cookie技术:

对于SYN攻击,Syn Cache虽然不分配TCB,但是为了判断后续对方发来的ACK报文中的Sequence Number的正确性,还是需要使用一些空间去保存己方生成的Sequence Number等信息,也造成了一些资源的浪费。

Syn Cookie技术则完全不使用任何存储资源,这种方法比较巧妙,它使用一种特殊的算法生成Sequence Number,这种算法考虑到了对方的IP、端口、己方IP、端口的固定信息,以及对方无法知道而己方比较固定的一些信息,如MSS、时间等,在收到对方的ACK报文后,重新计算一遍,看其是否与对方回应报文中的(Sequence Number-1)相同,从而决定是否分配TCB资源。

使用SYN Proxy防火墙

Syn Cache技术和Syn Cookie技术总的来说是一种主机保护技术,需要系统的TCP/IP协议栈的支持,而目前并非所有的操作系统支持这些技术。因此很多防火墙中都提供一种SYN代理的功能,其主要原理是对试图穿越的SYN请求进行验证后才放行,下图描述了这种过程:

image.png

从上图(左图)中可以看出,防火墙在确认了连接的有效性后,才向内部的服务器(Listener)发起SYN请求,在右图中,所有的无效连接均无法到达内部的服务器。

采用这种方式进行防范需要注意的一点就是防火墙需要对整个有效连接的过程发生的数据包进行代理,如下图所示:

请点击输入图片描述

image.png

因为防火墙代替发出的SYN ACK包中使用的序列号为c,而服务器真正的回应包中序列号为c’,这其中有一个差值|c-c’|,在每个相关数据报文经过防火墙的时候进行序列号的修改。

TCP Safe Reset技术:

这也是防火墙Syn代理的一种方式,其工作过程如下图所示:

image.png

这种方法在验证了连接之后立即发出一个Safe Reset命令包,从而使得Client重新进行连接,这时出现的Syn报文防火墙就直接放行。在这种方式中,防火墙就不需要对通过防火墙的数据报文进行序列号的修改了。这需要客户端的TCP协议栈支持RFC 793中的相关约定,同时由于Client需要两次握手过程,连接建立的时间将有所延长。

2.3.2 死亡之 Ping(Ping O' Death )

死亡之 Ping 是利用 ICMP 协议的一种碎片攻击 。攻击者发送一个长度超过 65 535Byte 的 Echo Request 数据包,目标主机在重组分片的时候会造成事先分配的 65 535 Byt 字节缓冲区溢出,系统通常会崩愤或挂起

IP 数据包的最大长度是 65 535 (2 16 - 1) Byte,其中包括包头长度(如果 IP 选项末指定,一般为 20 B)超过 MTU( Maximum Transmission Unit) 的数据包被分割成小的数据包,在接受端重新组装。一般以太网的MTU 为 11500 Byte ,互联网上的 MTU 通常是 576 Byte ICMP 回应请求放在 IP 数据包中,其中有 8 Byt 的 ICMP头信息,接下来是 "Ping" 请求的数据宇节的数目。因此数据区所允许的最大尺寸为 65 535 - 20 - 8 = 65 507Byte

image.png

分段后的 IP 包要在接收端的 IP 层进行重组,这样"死亡之 Ping"就可以再发送一个回应请求数据包,使它的数据包中的数据超过 65 507 Byte ,使得某些系统的 IP 分段组装模块出现异常。因为在 IP 分段组装的过程中,它通过每一个 IP 分段中的偏移量来决定每一个分段在整个 IP 包中的位置,最后一个分段中,如果 IP 包的长度大于 65 507 Byte各个分段组装后就会超过 IP 包的最大长度。某些操作系统要等到将所有的分段组装完后才对 IP 包进行处理,所以就存在这样一种内部缓冲区或内部变量溢出的可能性,这样会导致系统崩愤或重启。

防范措施

可以利用防火墙来阻止 Ping ,然而这样也会阻挡一些合法应用。所以只要阻止被分段的 Ping ,这样在大多数系统上允许一般合法的 64 Byt 的 Ping 通过,挡住了那些长度大于 MTU 的 ICMP 数据包.

这种攻击能使系统崩溃的原因因系统不同而异.有的可能因为内核中固定大小的缓冲区因 IP 数据包过大而越界,损坏了其它数据或编码;有的则可能因为用一个无符号的 16 bit 变量来保存数据包的长度和相关变量,当这些变量的值超过 65 535 Byte 时,变量不再与其数值一致,从而引发异常。因此可以为相应的系统打上补丁。

2.3.3 RST 和 FIN 攻击( RST and FIN attack)

在 TCP 包中有 6 个标志位来指示分段的状态。其中 RST 用来复位一个连接, FIN 表示没有数据要发送了攻击者经常利用这两个标志位进行拒绝服务攻击。他们先分析通过目标主机和受骗主机之间的 IP 数据包,计算出从受骗主机发往目标主机的下一个 TCP 段的序列号,然后产生一个带有 RST 位设置的 TCP 段,将其放在假冒源 IP 地址的数据包中发往目标主机,目标主机收到后就关闭与受骗主机的连接。

利用 FIN 位的攻击与 RST 位的攻击很相似。攻击者预测到正确的序列号后,使用它创建一个带 FIN 位的 TCP 分段,然后发送给目标主机,好像受骗主机没有数据要发送了,这样,由受骗主机随后发出的 TCP 段都会目标主机认为是网络错误而忽略。

2.3.6 Smurf攻击

通过地址欺骗,并使用回复地址设置成受害网络的广播地址的ICMP应答请求(ping)数据包来淹没受害主机的方式进行。最终导致该网络的所有主机都对此ICMP应答请求做出答复,导致网络阻塞

黑客锁定一个被攻击的主机(通常是一些Web服务器);

黑客寻找可做为中间代理的站点,用来对攻击实施放大(通常会选择多个,以便更好地隐藏自己,伪装攻击);

黑客给中间代理站点的广播地址发送大量的ICMP包(主要是指Ping命令的回应包)。这些数据包全都以被攻击的主机的IP地址做为IP包的源地址;

中间代理向其所在的子网上的所有主机发送源IP地址欺骗的数据包;

中间代理主机对被攻击的网络进行响应。

2.3.7 Land 攻击

用一个特别打造的SYN包,其原地址和目标地址都被设置成某一个服务器地址。此举将导致服务器向它自己的地址发送SYN-ACK消息,结果这个地址又发回ACK消息并创建一个空连接。被攻击的服务器每接收一个这样的连接都将保留,直到超时

防御方法:

这类攻击的检测方法相对来说比较容易,因为可以直接通过判断网络数据包的源地址和目标地址是否相同确认是否属于攻击行为。反攻击的方法当然是适当地配置防火墙设备或制定包过滤路由器的包过滤规则,并对这种攻击进行审计,记录事件发生的时间、源主机和目标主机的MAC地址和IP地址,从而可以有效地分析并跟踪攻击者的来源。

2.3.8 UDP FLOOD攻击

UDP不需要像TCP那样进行三次握手,运行开销低,不需要确认数据包是否成功到达目的地。这就造成UDP泛洪攻击不但效率高,而且还可以在资源相对较少的情况下执行。UDP FLOOD可以使用小数据包(64字节)进行攻击,也可以使用大数据包(大于1500字节,以太网MTU为1500字节)进行攻击。大量小数据包会增大网络设备处理数据包的压力;而对于大数据包,网络设备需要进行分片、重组,最终达到的效果就是占用网络传输接口的带宽、网络堵塞、服务器响应慢等等。

防御方案: 限制每秒钟接受到的流量(可能产生误判);通过动态指纹学习(需要攻击发生一定时间),将非法用户加入黑名单。

2.3.9 泪滴攻击

“teardrop”,又称“泪滴”:IP数据包在网络传递时,数据包可以分成更小的片段。攻击者可以通过发送两段(或者更多)数据包来实现TearDrop攻击。第一个包的偏移量为0,长度为N,第二个包的偏移量小于N。为了合并这些数据段,TCP/IP堆栈会分配超乎寻常的巨大资源,从而造成系统资源的缺乏甚至机器的重新启动,达到攻击者需要的拒绝服务的目的。

3. DOS与DDOS区别

3.1 DOS

“DoS”是Denial of Service,拒绝服务的缩写。所谓的拒绝服务是当前网络攻击手段中最常见的一种。它故意攻击网络协议的缺陷或直接通过某种手段耗尽被攻击对象的资源,目的是让目标计算机或网络无法提供正常的服务或资源访问,使目标系统服务停止响应甚至崩溃,而最值得注意的是,攻击者在此攻击中并不入侵目标服务器或目标网络设备,单纯利用网络缺陷或者暴力消耗即可达到目的。

从原理上来说,无论攻击者的攻击目标(服务器、计算机或网络服务)的处理速度多快、内存容量多大、网络带宽的速度多快都无法避免这种攻击带来的后果。任何资源都有一个极限,所以攻击者总能找到一个方法使请求的值大于该极限值,导致所提供的服务资源耗尽。

从技术分类的角度上来说,最常见的DoS攻击有对计算机网络的带宽攻击和连通性攻击。带宽攻击指以极大的通信量冲击网络,使得所有可用网络资源都被消耗殆尽,最后导致合法用户的请求无法通过。连通性攻击指用大量的连接请求冲击服务器或计算机,使得所有可用的操作系统资源都被消耗殆尽,最终计算机无法再处理合法用户的请求。

在网络还不发达的时候,单一的DoS攻击一般是采用一对一的方式,也就是攻击者直接利用自己的计算机或者设备,对攻击目标发起DoS攻击。当攻击目标处在硬件性能低下、网络连接情况不好等情况的时候,一对一的DoS攻击效果是非常明显的,很有可能直接一个攻击者就搞定一个网站或者一个服务器,让它拒绝服务。

3.2 DDOS

随着计算机和网络技术的发展,硬件设备的处理性能加速度增长,成本也变得非常低廉,网络的快速发展更是让带宽、出入口节点宽度等大大的提升,这让传统的DoS攻击很难凑效。

随着这样情况的出现,攻击者研究出了新的攻击手段,也就是DDoS。

DDoS是在传统的DoS攻击基础之上产生的一种新的攻击方式,即Distributed Denial Of Service,分布式拒绝服务攻击。

如果说计算机与网络的处理能力比以往加大了10倍的话(示例数据,没有实质意义),那攻击者使用10台计算机同时进行攻击呢?也就达到了可以让目标拒绝服务的目的。简单来说,DDoS就是利用更多的计算机来发起攻击。

就技术实现方式来分析,分布式拒绝服务攻击就是攻击者利用入侵手段,控制几百台,或者成千上万台计算机(一般被控制的计算机叫做傀儡主机,或者口头被网络安全相关人员称为“肉鸡”),然后在这些计算机上安装大量的DDoS程序。这些程序接受来自攻击者的控制命令,攻击者同时启动全部傀儡主机向目标服务器发起拒绝服务攻击,形成一个DoS攻击群,猛烈的攻击目标,这样能极为暴力的将原本处理能力很强的目标服务器攻陷。

3.3 区别

通过上面的分析,可以看出DDoS与DoS的最大区别是数量级的关系,DoS相对于DDoS来说就像是一个个体,而DDoS是无数DoS的集合。另一方面,DDoS攻击方式较为自动化,攻击者可以把他的程序安装到网络中的多台机器上,所采用的这种攻击方式很难被攻击对象察觉,直到攻击者发下统一的攻击命令,这些机器才同时发起进攻。可以说DDoS攻击是由黑客集中控制发动的一组DoS攻击的集合,现在这种方式被认为是最有效的攻击形式,并且非常难以抵挡。

9计算机网络道德问题:黑客有哪些常见的攻击手段?如何防范黑客?

目前造成网络不安全的主要因素是系统、协议及数据库等的设计上存在缺陷。由于当今的计算机网络操作系统在本身结构设计和代码设计时偏重考虑系统使用时的方便性,导致了系统在远程访问、权限控制和口令管理等许多方面存在安全漏洞。网络互连一般采用TCP/IP协议,它是一个工业标准的协议簇,但该协议簇在制订之初,对安全问题考虑不多,协议中有很多的安全漏洞。同样,数据库管理系统(DBMS)也存在数据的安全性、权限管理及远程访问等方面问题,在DBMS或应用程序中可以预先安置从事情报收集、受控激发、定时发作等破坏程序。

由此可见,针对系统、网络协议及数据库等,无论是其自身的设计缺陷,还是由于人为的因素产生的各种安全漏洞,都可能被一些另有图谋的黑客所利用并发起攻击。因此若要保证网络安全、可靠,则必须熟知黑客网络攻击的一般过程。只有这样方可在黒客攻击前做好必要的防备,从而确保网络运行的安全和可靠。

一、黑客攻击网络的一般过程

1、信息的收集

信息的收集并不对目标产生危害,只是为进一步的入侵提供有用信息。黑客可能会利用下列的公开协议或工具,收集驻留在网络系统中的各个主机系统的相关信息:

(1)TraceRoute程序 能够用该程序获得到达目标主机所要经过的网络数和路由器数。

(2)SNMP协议 用来查阅网络系统路由器的路由表,从而了解目标主机所在网络的拓扑结构及其内部细节。

(3)DNS服务器 该服务器提供了系统中可以访问的主机IP地址表和它们所对应的主机名。

(4)Whois协议 该协议的服务信息能提供所有有关的DNS域和相关的管理参数。

(5)Ping实用程序 可以用来确定一个指定的主机的位置或网线是否连通。

2、系统安全弱点的探测

在收集到一些准备要攻击目标的信息后,黑客们会探测目标网络上的每台主机,来寻求系统内部的安全漏洞,主要探测的方式如下:

(1)自编程序 对某些系统,互联网上已发布了其安全漏洞所在,但用户由于不懂或一时疏忽未打上网上发布的该系统的“补丁”程序,那么黒客就可以自己编写一段程序进入到该系统进行破坏。

(2)慢速扫描 由于一般扫描侦测器的实现是通过监视某个时间段里一台特定主机发起的连接的数目来决定是否在被扫描,这样黑客可以通过使用扫描速度慢一些的扫描软件进行扫描。

(3)体系结构探测 黑客利用一些特殊的数据包传送给目标主机,使其作出相对应的响应。由于每种操作系统的响应时间和方式都是不一样的,黒客利用这种特征把得到的结果与准备好的数据库中的资料相对照,从中便可轻而易举地判断出目标主机操作系统所用的版本及其他相关信息。

(4)利用公开的工具软件 像审计网络用的安全分析工具SATAN、Internet的电子安全扫描程序IIS等一些工具对整个网络或子网进行扫描,寻找安全方面的漏洞。

3、建立模拟环境,进行模拟攻击

根据前面两小点所得的信息,建立一个类似攻击对象的模拟环境,然后对此模拟目标进行一系列的攻击。在此期间,通过检查被攻击方的日志,观察检测工具对攻击的反应,可以进一步了解在攻击过程中留下的“痕迹”及被攻击方的状态,以此来制定一个较为周密的攻击策略。

4、具体实施网络攻击

入侵者根据前几步所获得的信息,同时结合自身的水平及经验总结出相应的攻击方法,在进行模拟攻击的实践后,将等待时机,以备实施真正的网络攻击。

二、协议欺骗攻击及其防范措施

1、源IP地址欺骗攻击

许多应用程序认为若数据包可以使其自身沿着路由到达目的地,并且应答包也可回到源地,那么源IP地址一定是有效的,而这正是使源IP地址欺骗攻击成为可能的一个重要前提。

假设同一网段内有两台主机A和B,另一网段内有主机X。B 授予A某些特权。X 为获得与A相同的特权,所做欺骗攻击如下:首先,X冒充A,向主机 B发送一个带有随机序列号的SYN包。主机B响应,回送一个应答包给A,该应答号等于原序列号加1。然而,此时主机A已被主机X利用拒绝服务攻击 “淹没”了,导致主机A服务失效。结果,主机A将B发来的包丢弃。为了完成三次握手,X还需要向B回送一个应答包,其应答号等于B向A发送数据包的序列号加1。此时主机X 并不能检测到主机B的数据包(因为不在同一网段),只有利用TCP顺序号估算法来预测应答包的顺序号并将其发送给目标机B。如果猜测正确,B则认为收到的ACK是来自内部主机A。此时,X即获得了主机A在主机B上所享有的特权,并开始对这些服务实施攻击。

要防止源IP地址欺骗行为,可以采取以下措施来尽可能地保护系统免受这类攻击:

(1)抛弃基于地址的信任策略 阻止这类攻击的一种十分容易的办法就是放弃以地址为基础的验证。不允许r类远程调用命令的使用;删除.rhosts 文件;清空/etc/hosts.equiv 文件。这将迫使所有用户使用其它远程通信手段,如telnet、ssh、skey等等。

(2)使用加密方法 在包发送到 网络上之前,我们可以对它进行加密。虽然加密过程要求适当改变目前的网络环境,但它将保证数据的完整性、真实性和保密性。

(3)进行包过滤 可以配置路由器使其能够拒绝网络外部与本网内具有相同IP地址的连接请求。而且,当包的IP地址不在本网内时,路由器不应该把本网主机的包发送出去。有一点要注意,路由器虽然可以封锁试图到达内部网络的特定类型的包。但它们也是通过分析测试源地址来实现操作的。因此,它们仅能对声称是来自于内部网络的外来包进行过滤,若你的网络存在外部可信任主机,那么路由器将无法防止别人冒充这些主机进行IP欺骗。

2、源路由欺骗攻击

在通常情况下,信息包从起点到终点所走的路是由位于此两点间的路由器决定的,数据包本身只知道去往何处,而不知道该如何去。源路由可使信息包的发送者将此数据包要经过的路径写在数据包里,使数据包循着一个对方不可预料的路径到达目的主机。下面仍以上述源IP欺骗中的例子给出这种攻击的形式:

主机A享有主机B的某些特权,主机X想冒充主机A从主机B(假设IP为aaa.bbb.ccc.ddd)获得某些服务。首先,攻击者修改距离X最近的路由器,使得到达此路由器且包含目的地址aaa.bbb.ccc.ddd的数据包以主机X所在的网络为目的地;然后,攻击者X利用IP欺骗向主机B发送源路由(指定最近的路由器)数据包。当B回送数据包时,就传送到被更改过的路由器。这就使一个入侵者可以假冒一个主机的名义通过一个特殊的路径来获得某些被保护数据。

为了防范源路由欺骗攻击,一般采用下面两种措施:

· 对付这种攻击最好的办法是配置好路由器,使它抛弃那些由外部网进来的却声称是内部主机的报文。

· 在路由器上关闭源路由。用命令no ip source-route。

三、拒绝服务攻击及预防措施

在拒绝服务攻击中,攻击者加载过多的服务将对方资源全部使用,使得没有多余资源供其他用户无法使用。SYN Flood攻击是典型的拒绝服务攻击。

SYN Flood常常是源IP地址欺骗攻击的前奏,又称半开式连接攻击,每当我们进行一次标准的TCP连接就会有一个三次握手的过程,而SYN Flood在它的实现过程中只有三次握手的前两个步骤,当服务方收到请求方的SYN并回送SYN-ACK确认报文后,请求方由于采用源地址欺骗等手段,致使服务方得不到ACK回应,这样,服务方会在一定时间内处于等待接收请求方ACK报文的状态,一台服务器可用的TCP连接是有限的,如果恶意攻击方快速连续的发送此类连接请求,则服务器的系统可用资源、网络可用带宽急剧下降,将无法向其它用户提供正常的网络服务。

为了防止拒绝服务攻击,我们可以采取以下的预防措施:

(1) 建议在该网段的路由器上做些配置的调整,这些调整包括限制Syn半开数据包的流量和个数。

(2)要防止SYN数据段攻击,我们应对系统设定相应的内核参数,使得系统强制对超时的Syn请求连接数据包复位,同时通过缩短超时常数和加长等候队列使得系统能迅速处理无效的Syn请求数据包。

(3)建议在路由器的前端做必要的TCP拦截,使得只有完成TCP三次握手过程的数据包才可进入该网段,这样可以有效地保护本网段内的服务器不受此类攻击。

(4)对于信息淹没攻击,我们应关掉可能产生无限序列的服务来防止这种攻击。比如我们可以在服务器端拒绝所有的ICMP包,或者在该网段路由器上对ICMP包进行带宽方面的限制,控制其在一定的范围内。

总之,要彻底杜绝拒绝服务攻击,最好的办法是惟有追根溯源去找到正在进行攻击的机器和攻击者。 要追踪攻击者可不是一件容易的事情,一旦其停止了攻击行为,很难将其发现。惟一可行的方法是在其进行攻击的时候,根据路由器的信息和攻击数据包的特征,采用逐级回溯的方法来查找其攻击源头。这时需要各级部门的协同配合方可有效果。

四、其他网络攻击行为的防范措施

协议攻击和拒绝服务攻击是黑客惯于使用的攻击方法,但随着网络技术的飞速发展,攻击行为千变万化,新技术层出不穷。下面将阐述一下网络嗅探及缓冲区溢出的攻击原理及防范措施。

1、针对网络嗅探的防范措施

网络嗅探就是使网络接口接收不属于本主机的数据。计算机网络通常建立在共享信道上,以太网就是这样一个共享信道的网络,其数据报头包含目的主机的硬件地址,只有硬件地址匹配的机器才会接收该数据包。一个能接收所有数据包的机器被称为杂错节点。通常账户和口令等信息都以明文的形式在以太网上传输,一旦被黑客在杂错节点上嗅探到,用户就可能会遭到损害。

对于网络嗅探攻击,我们可以采取以下措施进行防范:

(1)网络分段 一个网络段包括一组共享低层设备和线路的机器,如交换机,动态集线器和网桥等设备,可以对数据流进行限制,从而达到防止嗅探的目的。

(2)加密 一方面可以对数据流中的部分重要信息进行加密,另一方面也可只对应用层加密,然而后者将使大部分与网络和操作系统有关的敏感信息失去保护。选择何种加密方式这就取决于信息的安全级别及网络的安全程度。

(3)一次性口令技术 口令并不在网络上传输而是在两端进行字符串匹配,客户端利用从服务器上得到的Challenge和自身的口令计算出一个新字符串并将之返回给服务器。在服务器上利用比较算法进行匹配,如果匹配,连接就允许建立,所有的Challenge和字符串都只使用一次。

(4)禁用杂错节点 安装不支持杂错的网卡,通常可以防止IBM兼容机进行嗅探。

2、缓冲区溢出攻击及其防范措施

缓冲区溢出攻击是属于系统攻击的手段,通过往程序的缓冲区写超出其长度的内容,造成缓冲区的溢出,从而破坏程序的堆栈,使程序转而执行其它指令,以达到攻击的目的。当然,随便往缓冲区中填东西并不能达到攻击的目的。最常见的手段是通过制造缓冲区溢出使程序运行一个用户shell,再通过shell执行其它命令。如果该程序具有root权限的话,攻击者就可以对系统进行任意操作了。

缓冲区溢出对网络系统带来了巨大的危害,要有效地防止这种攻击,应该做到以下几点:

(1)程序指针完整性检查 在程序指针被引用之前检测它是否改变。即便一个攻击者成功地改变了程序的指针,由于系统事先检测到了指针的改变,因此这个指针将不会被使用。

(2)堆栈的保护 这是一种提供程序指针完整性检查的编译器技术,通过检查函数活动记录中的返回地址来实现。在堆栈中函数返回地址后面加了一些附加的字节,而在函数返回时,首先检查这个附加的字节是否被改动过。如果发生过缓冲区溢出的攻击,那么这种攻击很容易在函数返回前被检测到。但是,如果攻击者预见到这些附加字节的存在,并且能在溢出过程中同样地制造他们,那么他就能成功地跳过堆栈保护的检测。

(3)数组边界检查 所有的对数组的读写操作都应当被检查以确保对数组的操作在正确的范围内进行。最直接的方法是检查所有的数组操作,通常可以采用一些优化技术来减少检查次数。目前主要有这几种检查方法:Compaq C编译器、Jones Kelly C数组边界检查、Purify存储器存取检查等。

未来的竞争是信息竞争,而网络信息是竞争的重要组成部分。其实质是人与人的对抗,它具体体现在安全策略与攻击策略的交锋上。为了不断增强信息系统的安全防御能力,必须充分理解系统内核及网络协议的实现,真正做到洞察对方网络系统的“细枝末节”,同时应该熟知针对各种攻击手段的预防措施,只有这样才能尽最大可能保证网络的安全。

扫描二维码推送至手机访问。

版权声明:本文由黑客平台在线接单_免费黑客平台的网站发布,如需转载请注明出处。

本文链接:http://heikexuexi.com/43596.html

分享给朋友:

“黑客对网络协议(网络黑客定义)” 的相关文章

工作心得心得体会

工作心得心得体会

                                                                                               除了一段比来 的练习 事情 之外,尔还有一些深刻的事情 口患上口患上了解 。过去, 尔实认为,他所做的足以支付...

入党积极分子心得体会格式

入党积极分子心得体会格式

                                                                                               通过这个过程 对党员的热情训练,很明显 只要保持 不懈的努力 ,严格 请求本身 ,能力 足以在未来 学习 ,...

教师节颁奖词

教师节颁奖词

                                                                                               老师是一个伟大的职业,各种 颁罚仪式 下都没有标致 的颁罚词,那边准备了几篇 西席 节罚词,一路 看看。一个寒...

大学军训感受500字左右

大学军训感受500字左右

                                                                                               刚进入新年 教学时刻 ,任何新年 教学都必须 接受 空军训练。在新年 教授的军事训练中,我们应该把自己 当作军...

 简单大方的自我介绍学生

简单大方的自我介绍学生

许多 教熟画野 作自身 的毛遂自荐 。很多 教熟皆心愿 自身 的毛遂自荐 皆是纯粹大 圆的。那么该怎祥 工作能力 够作没纯粹大 圆的毛遂自荐 的信息呢?昨日已经那面给大 野带去的就是无有关纯粹大 圆的教熟毛遂自荐 的相闭內容,心愿 否以 针对大 野可以也许 有一定的冠名赞助 ,迎来 大 野 访问参考...

高中生优秀自我介绍

高中生优秀自我介绍

已经下外刚开始 的时刻 ,很多 人画野 作孬自身 的毛遂自荐 ,那么该怎祥 能力 够写没一篇优良 的毛遂自荐 范例呢?已经那面给大 野带去的就是无有关下外熟优良 毛遂自荐 的相闭范例,心愿 否以 针对大 野可以也许 有一定的赞助 ,迎来 大 野 访问参考鉴戒 。重视 的诸位 老先生 ,同窗 们各位朋...

评论列表

馥妴温人
2年前 (2022-07-05)

址表和它们所对应的主机名。 (4)Whois协议 该协议的服务信息能提供所有有关的DNS域和相关的管理参数。 (5)Ping实用程序 可以用来确定一个指定的主机的位置或网线是否连通。 2、系统安全弱点的探测 在收集到一些准备

孤央私野
2年前 (2022-07-05)

OS随着计算机和网络技术的发展,硬件设备的处理性能加速度增长,成本也变得非常低廉,网络的快速发展更是让带宽、出入口节点宽度等大大的提升,这让传统的DoS攻击很难凑效

双笙袖间
2年前 (2022-07-05)

整性检查 在程序指针被引用之前检测它是否改变。即便一个攻击者成功地改变了程序的指针,由于系统事先检测到了指针的改变,因此这个指针将不会被使用。 (2)堆栈的保护 这是一种提供程序指

泪灼掩吻
2年前 (2022-07-05)

at的后面,并在其后添加一个命令,那么将在执行hello.bat后执行第二个命令。 由于已经删除了文件hello.bat和echo.bat,Sambar 4.3 beta 8版和更高版本没有该弱点。但是,由于Windows命令外壳程序解析命令行的方式无法改变,所以并没有办法能真正

发表评论

访客

◎欢迎参与讨论,请在这里发表您的看法和观点。